# Landscape LiDAR and Managing Forests at Multiple Scales a Tahoe National Forest case study

- Current assessments
  - Visualizations
  - Applying coarse datasets to project planning
- Tahoe National Forest LiDAR
  - Visualizations
  - "EcObject" vegetation mapping
  - LiDAR informed landscape assessment
  - LiDAR aided project layout, surveys, and treatment effects modeling
- Conclusions
- Next Steps



































### LIDAR - Light Detection and Ranging

Measures distances (through laser pulses) that strike and reflect from features on the surface of the earth.

Converts scanning angle and distance-from-sensor information into georeferenced data points

Collects 100-500 thousand positions/second ('point clouds')



### Lidar data =

- Precisely referenced points in time and space
- Creates a "point cloud" can extract:
  - structures
  - vegetation
  - o ground
  - o rivers, roads, archeologic, etc.





## Tahoe National Forest LiDAR

- 1.3 million acres flown in 2013/2014
- ~ \$ 1 million
  - cost share between USFS & USGS
- 10-12 pulses per square meter
- 14 terabytes of data







### **EcObject Vegetation Mapping**

Individual trees extracted from LiDAR (Objects)















Kirk Evans — USFS Remote Sensing Lab
Carlos Ramirez — USFS Remote Sensing Lab

### **EcObject Vegetation Mapping**

- Individual trees extracted from LiDAR (Objects)
- Aggregated by stand and tree-level "ecological" relationships into polygons (EcObjets)







### **EcObject Vegetation Mapping**

- Individual trees extracted from LiDAR (Objects)
- Aggregated by stand and tree-level "ecological" relationships into polygons (EcObjects)





 EcObjects are populated with a collection of forest metrics compiled from a suite of multidimensional datasets









# Ecosystem Disturbance and Recovery Tracker (eDaRT) Plumas/Lassen National Forest 1998 - 2010



















# LANDSCAPE ASSESSMENT

- Seamless transition between scales





















# LANDSCAPE ASSESSMENT

- Seamless transition between scales
- Seamless transition between metrics







## LANDSCAPE ASSESSMENT

- Seamless transition between scales
- Seamless transition between metrics
- Simplified queries enables analysis without an analyst































### Couple Atmosphere Wildland Fire Environment (CAWFE)

Goodyear Bar Fire Tahoe National Forest



- Developed in response to current fire models inability to predict large or mega fire growth
- CAWFE combines a numerical weather prediction model and a fire behavior model that simulates the growth of a wildfire in response to weather, fuel conditions, and terrain
- These models are two-way coupled to constantly exchange information that creates a positive feed back loop of weather influencing fire behavior and then the fire influencing weather – winds, humidity





#### Credits:

Janice Coen — National Center for Atmospheric Research Natasha Stavoros — NASA's Jet Propulsion Lab Josephine Fite-Kaufman — USFS Region 5 Planning Team

## Couple Atmosphere Wildland Fire Environment (CAWFE)

Goodyear Bar Fire Tahoe National Forest



- Developed in response to current fire models inability to predict large or mega fire growth
- CAWFE combines a numerical weather prediction model and a fire behavior model that simulates the growth of a wildfire in response to weather, fuel conditions, and terrain
- These models are two-way coupled to constantly exchange information that creates a positive feed back loop of weather influencing fire behavior and then the fire influencing weather – winds, humidity
- Models smoke amounts and dispersion
- Both behavior and smoke outputs can be improved by high resolution LiDAR informed fuels data





#### Credits

Janice Coen – National Center for Atmospheric Research Natasha Stavoros – NASA's Jet Propulsion Lab Josephine Fite-Kaufman – USFS Region 5 Planning Team











# LIDAR AIDED PROJECT LAYOUT

















# LIDAR AIDED PROJECT SURVEYS























# LIDAR AIDED RESTORATION TREATMENT ANALYSIS

























Kirk Evans — USFS Remote Sensing Lab
Carlos Ramirez — USFS Remote Sensing Lab

































# Spatial Treatment Effects

#### Spatial Variable

- Inventory
  - Individual = 0.38 TPA
  - Clump = 95%
  - Opening = 1%
- Reference Condition
  - Individual = 1.87 TPA
  - Clump = 45%
  - Opening = 49%
- Post treatment
  - Individual = 1.25 TPA
  - Clump = 46%
  - Opening = 50%
- Alignment
  - Individual = 0.62 TPA
  - Clump = + 1%
  - Opening = + 1%



### Conclusions

- High Resolution LiDAR and it's derived products has moved from academic to practical
- Comprehensive Individual tree data facilitates reality based treatment effects
  - $\square$  Couple with visually capable software  $\rightarrow$  inclusion
- EcObject facilitates quantifiable forest structure comparisons at many scales
- EcObject's bundled metrics and scalability can satisfy a project's diverse needs
  - Cradle to grave
  - □ Single source analysis
- EcObject packaged data improves resource protection
  - Crews can survey what's important and ignore what's not
- $\square$  Focusing field work saves time  $\rightarrow$  \$

```
    Project Scale Saved (tracked for Big Jack East project)
```

- Survey ~ \$3*5*k
- Layout ~ \$45k
- Rx development/designation ~ \$25k
- Stand exams/effects analysis ~ \$20k
- NEPA analysis, appeals, litigation ??
- \$120,000 (estimated)
- o Accurate remote sensing data minimizes the need for verification o saves \$/builds trust
- lacktriangle A user friendly data package enables streamlined large scale analysis ightarrow saves \$/builds trust

```
    Landscape Scale Saved (for a forest plan revision type of analysis)
```

- Data capture ~ \$25k
- Analysis ~ \$100k
- Outputs ~ \$15k
- Appeals, litigation ??
- > \$140,000 (estimated)



### Conclusions

#### Pace and Scale?

- Improved efficiency >> frees up \$ for implementation and time for new analyses
- □ Increased effectiveness → facilitates accurate analysis at the all scales
- The complete picture helps discover other pace and scale barriers
  - risk vs reward



## Next Steps

- NASA's Jet Propulsion Lab Airborne Snow Observatory
  - High resolution with Imaging Spectroscopy (hyperspectral)







#### Credits:

## Next Steps

- NASA's Jet Propulsion Lab Airborne Snow Observatory
  - $lue{}$  High resolution LiDAR  $lue{}$  Imaging Spectroscopy (hyperspectral)
  - Interagency Agreement (IA) signatures spring 2017
- Lassen National Forest acquisition summer 2018
- □ Field campaign summer 2018
- EcObject vegetation map delivery spring/early summer 2019
- Work with University of Washington on resiliency envelope ongoing
- EcObject Improvements
  - Species identification
  - LiDAR conversion into traditional fuel metrics
  - Field validation campaign with Terrestrial LiDAR Scanning (TLS)





















